Wednesday, November 10, 2010

Mobile phones.. Since when have we been seeing these things around?

This morning I stumbled upon a very cool article on PCWorld.com called "In Pictures: A History of Cell Phones."
(Ref. Al Sacco in Soapbox)
What follows are few of the most notable events in the evolution of the cell phone, according to the article.

1973

* Motorola touts a prototype of the world's first mobile cellular phone, the Motorola DynaTAC 8000X. It's more than a foot long, weighs nearly 2 pounds and sells for $4,000. However, it wasn't commercially available until a decade later.

1982

* Finnish handset maker Nokia introduces its first mobile phone, the Nokia Mobira Senator. The device looks very much like a portable radio and it weighs a whopping 21 pounds. Yikes.


1993

* BellSouth/IBM unveil the world's first mobile phone with PDA features, including phone and pager functionality, calculator and calendar applications, as well as fax and e-mail capability. The BellSouth/IBM Simon Personal Communicator weighs 21 ounces and sells for $900.

1996

* Motorola debuts its StarTAC mobile phone, merging fashion and functionality into the cell phone. It weighs 3.1 ounces--light by even today's standards--and it is a clam shell device.

2000

* Kyocera introduces its QCP6035 mobile phone, the very first widely available Palm OS-based phone. It costs between $400 and $500 but only included 8MB of memory.

2001

* Before Palm acquired Handspring, the company released its Handspring Treo 180 cellular phone, which came in two versions. The Treo 180 was available with a QWERTY keyboard as well as in a separate version with text input method called Graffiti.

2002

* The Danger Hiptop, which later became known as the T-Mobile Sidekick, hits the mobile space. It is one of the first mobile devices to include a quality Web browser, reliable e-mail access and instant messaging, as well a unique swiveling form factor. (PCWorld.com later went on to name the device its 2003 product of the year.)
* The BlackBerry 5810 hits the market in 2002, and though it's not the first BlackBerry, it's the first such device from Research In Motion (RIM) to include voice functionality--though a headset is required because it doesn't have an external microphone or speaker.
* Sanyo and Sprint make the Sprint SCP-5300 PCS available, and both companies claim it's the first mobile phone in the United States to include a digital camera. Image quality is, however, less than impressive.

2004

* Motorola announces its RAZR v3 cell phone and starts a trend toward ultra-thin, stylish phones that's still influencing mobile device manufacturers today. The RAZR v3 is a "cool" device that everyone, from high schoolers to businessmen, wants. It's still one of the most popular mobile phones, and its one of the few handsets offered by the majority of major cellular carriers.

2006

* RIM, known for its high-end business phones and reliable "push" e-mail technology, makes its first foray into the consumer space with the BlackBerry Pearl 8100. The device is the first from RIM to include a digital camera and media player and it's also the smallest, thinnest BlackBerry--currently, the company's 8800 series of devices are the thinnest it offers. (Read CIO.com's review for more on the BlackBerry Pearl.)

2007

* Apple releases the iPhone, a beautifully designed device that includes an innovative--and much hyped up--touch screen navigation interface, which doesn't require the use of a stylus. The device is available exclusively through AT&T in the United States, and it comes in a 4GB version for $499 and an 8GB version for $599.

Digital wireless and cellular roots go back to the 1940s when commercial mobile telephony began. Compared with the furious pace of development today, it may seem odd that mobile wireless hasn't progressed further in the last 60 years. Where's my real time video watch phone? There were many reasons for this delay but the most important ones were technology, cautiousness, and federal regulation.

First generation analog cellular systems begin:-

BatelcoThe Bahrain Telephone Company (Batelco external link) in May, 1978 began operating a commercial cellular telephone system. It probably marks the first time in the world that individuals started using what we think of as traditional, mobile cellular radio. The two cell system had 250 subscribers, 20 channels in the 400Mhz band to operate on, and used all Matsushita equipment. (Panasonic is the name of Matsushita in the United States.) [Gibson]Cable and Wireless, now Global Crossing, installed the equipment.

In July, 1978 Advanced Mobile Phone Service or AMPS started operating in North America. In AT&T labs in Newark, New Jersey, and most importantly in a trial around Chicago, Illinois Bell and AT&T jointly rolled out analog based cellular telephone service. Ten cells covering 21,000 square miles made up the Chicago system. This first equipment test began using 90 Bell System employees. After six months, on December 20th, 1978, a market trial began with paying customers who leased the car mounted telephones. This was called the service test. The system used the newly allocated 800 MHz band. Although the Bell System bought an additional 1,000 mobile phones from Oki for the lease phase, it did place orders from Motorola and E.F. Johnson for the remainder of the 2100 radios needed. [Business Week2] This early network, using large scale integrated circuits throughout, a dedicated computer and switching system, custom made mobile telephones and antennas, proved a large cellular system could work.

The Rise of GSM

Europeans saw things differently. No new telephone system could accommodate their existing services on so many frequencies. They decided instead to start a new technology in a new radio band. Cellular structured but fully digital, the new service would incorporate the best thinking of the time. They patterned their new wireless standard after landline requirements for ISDN, hoping to make a wireless counterpart to it. The new service was called GSM.
GSM first stood for Groupe Speciale Mobile, after the study group that created the standard. It's now known as Global System for Mobile Communications, although the "C" isn't included in the abbreviation. In 1982 twenty-six European national phone companies began developing GSM. This Conference of European Postal and Telecommunications Administrations or CEPT, planned a uniform, European wide cellular system around 900 MHz. A rare triumph of European unity, GSM achievements became "one of the most convincing demonstrations of what co-operation throughout European industry can achieve on the global market." Planning began in earnest and continued for several years.

In the mid-1980s commercial mobile telephony took to the air. The North American terrestrial system or NATS was introduced by Airfone in 1984, the company soon bought out by GTE. The aeronautical public correspondence or APC service breaks down into two divisions. The first is the ground or terrestial based system (TAPC). That's where aircraft placed telephone calls go directly to a ground station. The satellite-based division, which came much later, places calls to a satellite which then relays the transmission to a ground station. AT&T soon established their own TAPC network after GTE..
PCS or Personal Communication Services were all digital, using TDMA routines and also code division multiple access or CDMA. These were IS-136 and IS-95, respectively. The most notable offering was European GSM, brought to America at a higher frequency and sometimes dubbed PCS1900. It uses TDMA. The evolution of IS-54, IS-136, came into being shortly after these new spectrum blocks were opened up. Today some carriers use both 900 MHz and 1900 MHz spectrum in a single area, putting a mobile call on whatever band is best at the time.

As we look toward the future the demand for new mobile wireless services seems unlimited, especially with the mobile internet upon us. Existing voice oriented systems will continue and be updated. New systems such as 3G will arrive in America once additional spectrum is cleared for their use. These new services will combine data and voice, treating transmission in a different way. Packet switching is a fundamental, elemental change between how wireless was delivered in the past and how it will be presented in the future.

No comments:

Post a Comment